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Abstract Multi-wall carbon nanotubes (CNTs)/Nafion

composite membrane modified glassy carbon electrode

(GCE) was fabricated to investigate the redox of brilliant

cresyl violet (BCV) and its supramolecular system with

c-CD and hydroxypropyl-c-CD (HP-c-CD). The cyclic

voltammetric results indicated that MWNTs/Nafion com-

posite membrane was able to electrocatalyze the redox of

BCV compared with bare GCE. Under optimal conditions,

differential pulse voltammetry (DPV) was used to study the

inclusion interaction of BCV with c-CD and HP-c-CD. The

consequence demonstrated that the formation of complexes

led to the rise of peak current and the shift of peak

potential. The inclusion constants of BCV dimer with

c-CD, HP-c-CD are 2,650 and 8,040 L/mol, respectively.

UV–Vis spectra were also employed to confirm the for-

mation of complexes. According to 1HNMR, the possible

binding mode of BCV dimer with CDs was discussed.
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Introduction

Carbon nanotubes (CNTs) have attracted intensive research

due to their excellent electrical conductivity, mechanical

strength, chemical stability, and flexibility [1]. These

unique properties suggest that CNTs have the ability to

promote electron transfer reactivity when used as an elec-

trode material in electrochemical reactions [2]. So CNTs are

widely used in electrochemistry as electrodes and as sub-

strates for the fabrication of modified electrodes. For

example, they have been utilized in the detection of DNA

[3], estrogenic compounds [4], bilirubin oxidase [5], metal

ion [6], medicine [7–9] with low detection limits and high

sensitivity. However, since carbon nanotubes are large

molecules with thousands of carbon atoms in an aromatic

delocalized system, they are practically insoluble in all

solvents, and as a result their applications are limited [10].

Up to now, the barriers of solubilizing CNTs have been

greatly improved through their covalent or noncovalent

functionalization [11]. In addition, wrapping CNTs by

polymer chains is a new approach for achieving the solu-

bility without any considerable impairment of their

physical, chemical, and electrochemical properties [12].

Composite materials based on solubilizing CNTs with

various polymers have been reported [13], one of which is

Nafion. Because of the unique ion exchange, discriminative

and biocompatible properties, Nafion films containing var-

ious electrocatalytic materials have been extensively

applied in the modification of the electrode surfaces and in

the construction of different functional biosensors. In

present works, Nafion is used as a surfactant and as a binder

to assist CNTs mechanical binding to the electrode [14].

Cyclodextrins (CDs) are cyclic oligosaccharides con-

taining six, seven, and eight glucose units and are commonly

called a-, b-, c-cyclodextrins, respectively [15, 16].
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Recently, natural and modified CDs have received much

attention as aqueous-based hosts for studying the recogni-

tion of organic compounds [17], as they can alter the

physical and chemical properties of guest molecules. In

aqueous solution, equilibrium is established between

uncomplex molecules and inclusion complexes. Frequently,

guest and host combine to form two or more complexes

which have different stoichiometries and stabilization. For

example, CDs have become an important host molecule in

dye industries because they can alter the solubility of dyes

and shift equilibrium among dye monomer, dimer, and

higher aggregate forms [18]. In addition, the formation of

inclusion complexes of cyclodextrins with dyes can improve

the rate of dyeing [19] and avoid effectively hydrolysis of

colors in dye bath [20].

Herein, the electrochemical behavior of brilliant cresyl

violet (BCV) on MWNTs/Nafion modified GCE was

reported. The results revealed that the electrochemical

signals of BCV on MWNTs/Nafion modified GCE can be

enhanced due to the excellent properties of nanotubes. The

electrochemical redox of BCV is a two-electron and two-

proton process. We also found that the equilibrium between

dye monomer and dimer was shifted with addition of c-CD

and HP-c-CD, and the main state of BCV was a supra-

molecule of dimer with CDs. This phenomenon presents an

agreement with the literature [21]. 1HNMR spectrum fur-

ther confirms the binding mode of BCV dimer with CDs,

indicating that BCV dimer can form 1:1 inclusion complex

with c-CD and HP-c-CD, respectively.

Experimental

Reagents

Multi-wall carbon nanotubes (MWNTs, average diameters

ranged from 10 to 30 nm) were purchased from Shenzhen

Bill Technology developing CO., LTD, and were purified

according to the previous reference [22]. Nafion was

obtained from Aldrich, and 0.1% ethanol solution was pre-

pared. Brilliant cresyl violet (BCV) was purchased from

Chroma-Gesellschaft Schmid & CO. c-CD and hydroxy-

propyl-c-CD (HP-c-CD) was purchased from Aldrich. Stock

solution of 1.0 9 10-2 mol/L CDs was prepared in double-

distilled water. 6.8 9 10-2 mol/L Na2HPO4–KH2PO4 buf-

fers of various pH values were used as the supporting

electrolytes. All other reagents were analytical reagent grade

and double-distilled water was used in all experiments.

Apparatus

A CHI 660C electrochemical workstation (Shanghai CH

Instrument Company, China) was used for all of the

electrochemical measurements such as cycle voltammetry

(CV) and differential pulse voltammetry (DPV). A glassy

carbon electrode (GCE) of 3-mm diameter was used as

working electrode; a platinum wire and a saturated calo-

mel electrode (SCE) were used as counter and reference

electrodes, respectively. Ultraviolet–visible spectra were

measured by employing TU-1901 spectrophotometer (Puxi

instrument Company, Beijing, China). The measurement

of 1HNMR was performed on DKX-300 MHz (Bruker,

Switzerland).

Procedures

Construction of the MWNTs/Nafion modified GCE

The surface of the working electrode was polished with 0.3

and 0.05 lm alumina/water slurries, washed with double-

distilled water, and finally ultrasonicated for 5 min before

use. 1 mg purified MWNTs were dispersed in 10 mL 0.1%

Nafion ethanol solution with the aid of ultrosonication to

form 0.1 mg/mL MWNTs/Nafion black solution. Then, the

MWNTs/Nafion modified GCE was fabricated by casting

5.0 lL of the suspension on the surface of the treated GCE

and dried at the room temperature. The modified GCE was

transferred to the electrolytic cell for further activating by

using cyclic voltammetry between -0.8 and 0.2 V at a

scan rate of 0.1 V/s in Na2HPO4–KH2PO4 buffer (pH 6.2)

until a stable cyclic voltammetric profile was obtained.

Voltammetry measurement

Cyclic voltammograms of BCV were recorded at a scan

rate of 0.1 V/s on unmodified and modified GCE. Mea-

surements were carried out in Na2HPO4–KH2PO4 buffer

(pH 6.2). The scan potential ranged from -0.8 to 0.2 V.

All measurements were performed at room temperature.

Differential pulse voltammetry was used to determine the

inclusion complex of BCV with CDs under optimal con-

dition. After the electrochemical experiments for BCV

were completed, appropriate amount of CDs were added to

the system and electrochemical signals were recorded after

reaction for 10 min.

Ultraviolet–visible spectra measurement

Ultraviolet–visible spectra were measured by employing

TU-1901 spectrophotometer at room temperature. Then,

appropriate amount of CDs were added to the quartz cell.

Ultraviolet–visible spectra were recorded by using the

same parameters as in the first scan after reaction for

10 min.
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Results and discussion

Electrochemical behavior of BCV

In this paper, a nanostructured modified glassy carbon

electrode was investigated. Markedly different electro-

chemical behavior of BCV was observed depending on

whether the glassy carbon electrodes used were unmodi-

fied, modified with Nafion film, or modified with MWNTs/

Nafion film. Figure 1 showed the cyclic voltammograms of

different kinds of modified GCEs in Na2HPO4–KH2PO4

buffer (pH 6.2). Two pairs of quasi-reversible cyclic vol-

tammetric peaks (curve a) were found on bare GCE at

Epa1 = - 193 mV and Epa2 = - 377 mV (corresponding

to cathodic peaks Epc1 = - 234 mV and Epc2 =

- 416 mV, respectively) at the scan rate of 0.1 V/s. The

peak-to-peak potential differences (DEp) were 41 mV and

39 mV, respectively. The above peaks correspond to the

reaction of the N atom at position 1 and position 2 (Fig. 2).

Curve b showed the cyclic voltammogram of BCV on

Nafion film modified GCE. The results demonstrated a

positive shift of two anodic peaks and a negative shift of

two cathodic peaks. However, in this case the increase of

the peak current at -193 mV was observed. It can be

ascribed as follow: Nafion is a kind of polyanionic poly-

mer. It possesses a polar side chain which act as an ion

exchange [23], as a result, the positive charge of BCV

molecular are easily exchanged on the surface of Nafion

modified GCE, and the peak current at -193 mV can

greatly be enhanced. For MWNTs/Nafion modified GCE,

the voltammogram (curve c) indicated a well-defined

quasi-reversible redox peak only at Epa = - 194 mV and

Epc = - 267 mV as well as the negative shifts of anodic

and cathodic peak potentials. It was also interesting to note

that the background current increased at modified GCE.

The peak at -377 mV was hardly observed. The possible

explanation could be the fact that the functional carbon

nanotubes possess –COOH and –OH groups, they can form

hydrogen bond with H atom at position 2 of BCV mole-

cule. On the other hand, the excellent electrocatalysis

ability of CNTs promotes electron transfer reactivity to

result in the increase of peak current.

Figure 3 showed the cyclic voltammograms of BCV in

Na2HPO4–KH2PO4 buffer (pH 6.2) at the different scan

rates. A pair of roughly symmetric anodic and cathodic

peaks appeared with almost equal peak currents in the

range from 0.04 V/s to 0.3 V/s. With the increase of the

scan rate the peak-to-peak potential differences also

increased. By measuring the dependence of the cathodic

peak potentials (on MWNTs/Nafion modified GCE) versus

the log of the scan rate, the electron numbers can be esti-

mated by the following equation [24]:
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Fig. 1 Cyclic voltammograms of 2.0 9 10-5 mol/L BCV in pH 6.2

Na2HPO4–KH2PO4 buffer a bare GCE, b Nafion film modified GCE,

c MWNTs/Nafion modified GCE
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Fig. 2 The structure of BCV
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Fig. 3 Cyclic voltammograms of 2.0 9 10-5 mol/L BCV in pH 6.2

Na2HPO4–KH2PO4 buffer. Scan rate (from inner to outer) 40, 60, 80,

100, 120, 140, 160, 180, 200, 250, and 300 mV/s. Insert: The relation

between the peak currents with scan rates
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Epc ¼ B� RT

anF
ln m

Where R is the gas constant, a is the transfer coefficient,

n is the number of electrons, F is the Faraday constant, and

B is a constant. We calculated that a is 0.61 and n is 2. The

ip versus m1/2 plot shown in the insert of Fig. 3 exhibited a

linear relationship indicating that the redox process was a

quasi-reversible diffusion controlled process.

The pH effects on the electrochemistry of BCV were

examined. Figure 4 presented the effect of pH values on

the peak currents of BCV. It was found that the anodic

peak currents of BCV increased gradually with pH values

increasing from 5.0 to 6.2, and maintained constant from

6.2 to 7.0, however, when pH values are higher than 7.0,

the peak currents decreased rapidly. It implied that BCV

was apt to redox in weak acid medium. Therefore, pH

6.2 was selected for further experiment. In addition, the

ratio of the electron numbers to the proton numbers

during the redox reaction was determined. It can be seen

that a linear relationship was found in the pH range from

5.0 to 9.2 with a slope of 59.6 mV/pH. The slope was

close to the theoretical value of 59 mV/pH, which indi-

cated that the numbers of protons and electrons involving

in the electrode process are equal. So, the electrochemi-

cal redox of BCV can be simply expressed as follows

(Fig. 5).

Host–guest complexation of BCV with cyclodextrins

The effect of CDs on the electrochemical properties of

various electroactive species included in the cavity has

been reported [25]. In the experimental measurements,

differential pulse voltammetry was employed to determine

the formation constants between host and guest. The dif-

ferential pulse voltammogram (DPV) in Fig. 6 showed that

anodic peak potential of BCV is at -258 mV. With addi-

tion of c-CD, the anodic peak potential shifted 2 mV

toward positive potential and the peak current increased

markedly. The results suggest that the supramolecular

system were formed between BCV and c-CD. Inclusion by

c-CD promoted BCV aggregation toward dimer in aqueous

solution, the electrochemical response mainly came from

the redox of the H-aggregation which possess more reac-

tion site, as a result, it inevitably lead to an increase of the

peak currents.

Literature [21] have revealed that the cationic dyes

tend to aggregate in the concentration range used

(10-3 * 10-6 mol/L), and mainly exist monomer–dimer

equilibrium. If the aggregation state equilibrium tends to

the formation of dimer and even higher-order aggregates,

the absorption peak will shift to the blue wavelength. From

Fig. 7 it can be seen that the dyes mainly exist as monomer
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Fig. 4 The effect of pH on peak current
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Fig. 6 Differential pulse voltammograms of 1.0 9 10-5 mol/L BCV

in pH 6.2 Na2HPO4–KH2PO4 buffer contain different concentrations

of c-CD. Concentration of c-CD: (1) 0; (2) 2.0 9 10-5; (3)

4.0 9 10-5; (4) 8.0 9 10-5; (5) 1.2 9 10-4; (6) 1.6 9 10-5 mol/L
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at 636 nm, with addition of c-CD, dimer will gradually

increase in solution, the peak at 636 nm continuous

declined and the peak at 599 nm gradually increased. Thus,

the peak at 599 nm was the characteristic value of BCV

dimer. The results implied that the main state of BCV is

monomer in solution without c-CD. However, the main

state of BCV is supramolecule of BCV dimer with c-CD in

the presence of c-CD because two BCV molecules form

H-aggregation in the cavity of c-CD.

The increase of peak current confirm that the complexes

of BCV dimer with c-CD is electrochemically active, if it is

assumed that the variation value of the peak current is

proportional to the concentration of complexes. The for-

mation constants b were determined by using the following

equation [26–29]:

1

Dip
¼ 1

Dimax

þ 1

Dimaxb CD½ �m

Where Dip stands for the variation of peak current

after forming inclusion complexes, Dimax is the peak

current in case of complete BCV complexing, [CD] is the

concentration of the CD, b is the inclusion constant and m

is the inclusion ratio. If BCV dimer and CDs only form a

complex dimer-CDm, the plots of 1/Dip versus 1/[CD]m

should give some curves when m is 1, 2, 3…, respectively.

From above formula, the results showed that the binding

ratio of BCV dimer with c-CD and HP-c-CD are both 1:1,

and inclusion constants are 2,650 and 8,040 L/mol,

respectively. The experimental data demonstrated that

modified c-CD afford the strong binding ability with

guest molecule than native c-CD. Strong inclusive ability

can be understood that the substitution by hydroxypropyl

destroy the strong hydrogen bond network, which make it

easier for guest molecules to gain access to modified CDs

cavity and to have bigger inclusion constants.

Discussion of binding mode

To estimate the possible complex mode of c-CD with guest

molecule, 1HNMR was performed to investigate the

structure of the host–guest inclusion complex by changes

of the chemical shifts of the relevant protons in 1HNMR

spectra. The 1HNMR of c-CD and the complexes of BCV

dimer with c-CD were shown in Fig. 8. The results dis-

played obvious chemical shifts of the H-3 (0.522 ppm) and

H-5 (0.261 ppm) protons of c-CD. Since both the H-3 and

H-5 protons are located at the interior of c-CD cavity and

H-5 protons are located near the narrow side of cavity, but

the H-3 protons near the wide side of cavity, indicating that

BCV dimer may enter the cavity of c-CD from the wide

side. According to the 1HNMR and the structure of BCV

dimer, the possible spatial configuration about the inclusion

complex of BCV dimer with c-CD was shown in Fig. 9.

Conclusions

In this paper, MWNTs/Nafion film coated GCE was fab-

ricated for the study of the electrochemical behavior of

brilliant cresyl violet and its interaction with c-CD and

HP-c-CD. Owing to the high specific surface area, subtle
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Fig. 7 Absorption spectra of 1.0 9 10-5 mol/L BCV in pH 6.2

Na2HPO4–KH2PO4 buffer contain different concentrations of c-CD.
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Fig. 8 1HNMR spectra (300 MHz, D2O) of a BCV-c-CD and b c-CD
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electronic properties and strong adsorptive ability of

MWNTs, the modified GCE can greatly enhance the redox

peak current of BCV. The BCV dimer can form 1:1

inclusion complexes with c-CD and HP-c-CD. The inclu-

sion constants are 2,650 and 8,040 L/mol, respectively.

The results indicated that the major factor affecting

inclusion ability is size matching between CDs and guest.

Furthermore, the sensitive and simple chemically modified

electrode was proved to be available and easy to fabricate

for researching the electrochemical behavior of cation dyes

and the supramolecular system.
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